

Durability & Damage Tolerance Testing and Analysis Protocols for Composite Structures

Life Factor, Load-Enhancement Factors, and Fatigue Life

Waruna P. Seneviratne, PhD John S. Tomblin, PhD

National Institute for Aviation Research Wichita State University Wichita, KS

FAA/EASA/Industry Composite Damage Tolerance & Maintenance Workshop June 1-5, 2009 Tokyo, Japan

FAA Sponsored Project Information

- National Institute for Aviation Research
 - John Tomblin, PhD (Executive Director)
 - Waruna Seneviratne, PhD (Research Scientist)
- Federal Aviation Administration
 - Curtis Davies
 - Program Manager
 - FAA William J. Hughes Technical Center, NJ
 - Larry Ilcewicz, PhD
 - FAA Chief Scientific and Technical Advisor for Composite Materials
 - FAA/Seattle Aircraft Cert. Office
 - Peter Shyprykevich
 - Consultant (Ret. FAA)

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

Background - Problem Statement -

- Although the materials, processes, layup, loading modes, failure modes, etc. are significantly different, most of current certification programs use the load-life factors generated for NAVY F/A-18 program.
 - Guidance to ensure safe reliable approach
 - Correlate certified "life" to improved LEF (load-life shift)

- With increased use of composite materials in primary structures, there is growing need to investigate extremely improbable high energy impact threats that reduce the residual strength of a composite structure to limit load.
 - Synthesize damage philosophy into the scatter analysis
 - Multiple LEF for different stage of test substantiation

Wichita State University

Scatter Analysis

- Background most test programs reference the Navy/FAA reports by Whitehead, et. al., (1986) and follow that approach
 - Most test programs have used the conclusions developed in this report regardless of design features, failure modes and/or materials

Integrates well into building-block approach based upon designspecific information gained from various coupon and element

Research Program Objectives

Wichita State University

Primary Objective

Develop a probabilistic approach to synthesize life factor, load factor and damage in composites to *determine fatigue life of a damage tolerant aircraft*

Secondary Objectives

- Extend the current certification approach to explore extremely improbable high energy impact threats, i.e. damages that reduce residual strength of aircraft to limit load capability
 - Investigate realistic service damage scenarios
 - Inspection & repair procedures suitable for field practice
- Incorporating certain **design changes** into full-scale substantiation without the burden of additional time-consuming and costly tests

Research Overview

Wichita State University

Scatter Analysis of Composite

Static Scatter Fatigue Scatter Life Factor Load Enhancement Factors

 $\frac{1}{\alpha_R}$

Wichita State University

Load Factor Approach

Increase applied loads in fatigue tests so that the same level of \bullet reliability can be achieved with a shorter test duration

Load (Scatter) Factor

Load Enhancement Factor Approach

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Material Databases

Wichita State University

- LEF

- » AS4/E7K8 (457/17)
- » T700/#2510 PW (240/7)
- » 7781/#2510 8HS (204/7)
- Laminate Data
 - » T700/#2510 UNI (853/47)
 - » T700/#2510 PW (863/48)
 - » T700/E765 UNI (834/47)
 - » T300/E765 PW (722/48)
 - » AS4C/MTM45 UNI (1151/86)
 - » AS4C/MTM45 8HS (1083/78)
- Adhesive Fatigue (390 spec./12 data sets)
 - » Loctite Paste
 - » PTM&W paste (2 bondline thicknesses)
 - » EA 9696 film
- Adhesive Effects of Defects
 - » T700/#2510 PW & EA9394 -PFS (70/6)
 - » T700/3900-2 PW & EA9394 (SLS) (20)
 - » T800/3900-2 UNI & EA9394 (SLS) (20)
 - » 7781/NB321 8HS & EA9394 (SLS) (20)

Sample S-N Curves

Wichita State University

Sample S-N Curves (contd..)

Fatigue Scatter Analysis Techniques

Individual Weibull

Adhesive Fatigue Scatter

Scatter Analysis Guidelines

Wichita State University

Sendeckyj

Application of LEF/N_F

Hybrid Structural Substantiation

Metals:

severe flight loads result in crack-growth retardation

Composites:

severe flight loads significantly contribute to flaw growth in composite structures and reduce the fatigue life

(a) Combined load-life test
 (b) Combined load-life spectrum
 Spread the high load cycles throughout the spectrum
 (may require crack growth analysis for hybrid structures)

Must preserve the stress ratios

Wichita State University

Load-Life-Damage Hybrid Approach

LLD Overview Load-Life Shift Application of LLD

Damage Scenarios

Wichita State University

Categories of Damage & Defect Considerations for Primary Composite Aircraft Structures

Category	Examples	Safety Considerations (Substantiation, Management)			
Category 1: Damage that may go undetected by field inspection methods (or allowable defects)	BVID, minor environmental degradation, scratches, gouges, allowable mfg. defects	Demonstrate reliable service life Retain Ultimate Load capability Design-driven safety			
Category 2: Damage detected by field inspection methods @ specified intervals (repair scenario)	VID (ranging small to large), mfg. defects/mistakes, major environmental degradation	Demonstrate reliable inspection Retain Limit Load capability Design, maintenance, mfg.			
Category 3: Obvious damage detected within a few flights by operations focal (repair scenario)	Damage obvious to operations in a "walk-around" inspection or due to loss of form/fit/function	Demonstrate quick detection Retain Limit Load capability Design, maintenance, operations			
<u>Category 4</u> : Discrete source damage known by pilot to limit flight maneuvers (repair scenario)	Damage in flight from events that are obvious to pilot (rotor burst, bird-strike, lightning)	Defined discrete-source events Retain "Get Home" capability Design, operations, maintenance		CA	T1
<u>Category 5</u> : Severe damage created by anomalous ground or flight events (repair scenario)	Damage occurring due to rare service events or to an extent beyond that considered in design	Requires new substantiation Requires operations awareness for safety (immediate reporting)	Design Load Level	Ultimate 1.5 Factor of Safety	CAT2 CAT3
AMTAS Spring 2006 Meeting April 11, 2006	Ć	Federal Aviation 1 Administration		• •	Aaximum load per lifetime Continued safe flight
REFERRENCE: Ilcewicz, L., "C	Allow Damag (All Increasing	rable Critical Damage e Limit Threshold DL) (CDT)			

FAA Damage Tolerance and Maintenance Workshop, Rosemont, IL, July, 2006.

Load-Life-Damage (LLD) Hybrid Approach

- scatter analysis
- Minimum risk of premature failure of fullscale article

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

Application to hybrid structure

Load Enhancement Factors

Wichita State University

alysis (Onset of) Flaw Growth

Wichita State University

LLD Approach - Example

• New Required Test Duration:

$$N_2^T = \left(1 - \frac{N_1^T}{N_1^R}\right) \cdot N_2^R$$

 No Damage (LEF=1.033)
 LID (LEF=1.014)
 Total

 Req.
 Test
 Req.
 Test

 3.0
 2.0
 2.5
 0.8
 2.8

Wichita State University

Composite Test Issues

Progressive Failure Flow Growth Fatigue & Damage Tolerance

Wichita State University

Flaw Growth

• Compliance change is a function of material, layup, test environment, loading mode, stress level, etc.

- Require extensive NDI
- Variable B-basis (scatter) at different stress levels
- Truncation levels

Damage-Tolerance Element Tests

- Scatter analysis or flaw growth threshold
- Scaling
 - Primary load path (LC)
 - Load redistribution (SC)
- Loading mode
 - Stress ratio
- Flaw-growth measurements
 - Compliance change
 - Stable or critical growth

6......

Number of Cycles

Damage Tolerance Element Testing - CAI

0.06 60 6.0 6.0 Ŧ 50 0.05 5.0 5.0 Indentation Depth Residual Indentation Depth (in) Damage Area 40 30 20 20 20 20 20 20 - Max 0.04 4.0 Damage Area (in²) – Min Ŧ 3.0 0.03 Damage Area Ŧ Comp. Strength -Max - Min 2.0 0.02 1.0 10 0.01 1.0 0.0 0 0.00 0.0 0 750 1500 3000 750 1500 3000 Impact Energy Level (in-lbf/in) Impact Energy Level (in-lbf/in) 4.0 ARAMIS out-of-plane displacement 1.05 3.0 Compliance (lbf/in) 0.60 0.00 mage Length/Height (in) SL3 (60%) 0.90 → SL2 (65%) 1.0 - SL3 (60%) → Width 0.85 ----Height 100000 10000 1000000 0.0 Number of Cycles 50000 100000 150000 200000 250000 300000 350000 400000 450000 0

Effects of Damage on α

Wichita State University

Full-Scale Validation

Wichita State University

Full-Scale Validation

Damage Tolerance Certification

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

After 1000 ft-lb damage at FWS 66.5 (top skin – front spar)

Extremely improbable energy levels

Wichita State University

Impact Trials

	6									
			Location	Drop		Cumm ant	Drop	Impact Energy		
	A A A A A A A A A A A A A A A A A A A	Spar	(FWS)	Weight (lb)	Impactor	Support Span (in)	Height (in)	in-lb	ft-lb	Notes
		Front	126.0	14.5	Bowling Ball	12	40	580	48	no visible damage on the surface or on the web
	n 6 - ch 7	Front	126.0	14.5	Bowling Ball	Steel base	80	1160	97	no visible damage on the surface; some fracture along web-flange intersection
		Front	126.0	14.5	Bowling Ball	Steel base	110	1595	133	no visible damage on the surface; some fracture along web-flange intersection
		Front	112.0	31	3-inch Sphere	16	36	1116	93	no visible damage on the surface; some fracture along web-flange intersection
		Front	106.0	31	3-inch Sphere	16	80	2480	207	no visible damage on the surface; some fracture along web-flange intersection
		Front	51.0	31	3-inch Sphere	16	110	3410	284	no visible damage on the surface; some fracture along web-flange intersection
		Rear	78.7	31	3-inch Sphere	16	72	2232	186	skin fracture + indent (web is not visible)
		Rear	54.7	31	3-inch Sphere	16	72	2232	186	skin fracture + indent; no damage to web (close to control surface mount)
		Rear	124.5	14.5	Bowling Ball	16	72	1044	87	indent + possible 2.75" fracture in the rear web
		Rear	114.5	20.5	Bowling Ball	16	110	2255	188	indent + possible 5.5" fracture in the rear web
10.0		Rear	102.5	45.5	Bowling Ball	16	72	3276	273	indent + possible 8" fracture in the rear web
8.0 -	11 Alt	Rear	89.5	37.5	3-inch Sphere	16	72	2700	225	skin fracture + indent (web is not visible)
		Front	89.5	37.5	3-inch Sphere	16	72	2700	225	no visible damage on the surface; web fracture
6.0 -	After 273 ft-lb impact (bowling ball)	Rear	45.0	37.5	3-inch Sphere	16	72	2700	225	Visible Damage on surface + fracture in the web away from the control surface mount

Front spar – no visible damage!!! Rear spar – Skin fracture + small indent

150 Energy Level (ft-lb)

100

fracture in web

Impactor: bowling ball + additional mass Locations: rear spar FWS 124.5, 114.5, and 102.5 Damages: BVID (no skin fracture) with possible large

200

250

300

Aprox. Damage Size along Rear Spar (in)

2.0

0.0

0

50

Impact Trials (contd..)

	• • •	a	TT ·	• .
1/10	anta	State	1 10 11	OPOIT

FWS (Front Spar)	Wedge	Mass (lb)	Drop Height (ft)	Energy (ft-lb)	Notes
120.5	1-inch	~15	6	~90	Localized surface damage at wedge contact line.
	1-inch	~15	10	~150	Localized surface damage at wedge contact line.
	1-inch	50.5405	10	~505	Localized surface damage at wedge contact line. Web delamination/fracture.
108.5	3-inch	50.5745	15	~759	Localized surface damage at wedge contact line. Web delamination/fracture.
	3-inch	50.5745	10	~506	Localized surface damage at wedge contact line. Web delamination/fracture.

Digital tap hammer and bondmaster NDI revealed that the surface damage is localized and contained within the contact area. Severe damages to front web.

Improbably Energy

Impact Damage – 1-inch Wedge

 Damage to top skin at front spar (impact location)

 Damages to front web (below the impact location)

After 90, 150, and 500 ft-lb damages at FWS 120.5 (top skin – front spar)

Impact Damage – 3-inch Wedge

 Damage to top skin at front spar (impact location)

 Damages to front web (below the impact location)

After 750, and 500 ft-lb damages at FWS 108.5 (top skin – front spar)

Impact Parameter Determination

CAT2 – Aft Spar (FWS 45)

Wichita State University

ST004 DaDT (Impact Damage)

CAT3 – Front Spar (FWS 65)

Wichita State University

• ST006 DaDT

• ST005 Static

Wichita State University

Cumulative Fatigue Unreliability

Reliability Analysis Inspection Intervals

Residual Strength Degradation

• Sendeckyj Wearout Model:

$$\sigma_r = \sigma_a \left[\left(\frac{\sigma_e}{\sigma_a} \right)^{\frac{1}{S}} - C(n_f - 1) \right]^{\frac{S}{S}}$$

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

• Linear Loss of Residual Strength: $\sigma_r = \sigma_e + \left(\frac{\sigma_a - \sigma_e}{N_f(\sigma_a)}\right) \cdot n_f$

Cumulative Fatigue Unreliability (CFU) Model

- Constant amplitude example (LID)
 - Experimental (Sendeckyj fit for test data):
 - 10,000 (77.5% SS) & 800,000 (61.5% SS)
 - CFU model (Sendeckyj residual strength):

- 9,625 (77.5% SS) & 799,625 (61.5% SS)

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

Effects of CAT3 Damage

Cumulative Fatigue Unreliability

Reliability of Residual Strength after CAT3

Effects of Shape Parameter of CAT3 Distribution

Inspection Intervals

- Full-scale test fatigue spectrum
- Target Reliability = 0.90
 - Critical Damage Threshold
 - POF Threshold → 0.10

Health Monitoring & Damage Evolution

Damage Propagation during Residual Strength Test

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

Damage progression along aft spar (top skin) of ST004 (CAT2 damage) during residual strength test after 2-DLT cyclic test

CAT3 DaDT – ST006

Wichita State University

– Summary – Load Enhancement Factor

- Integrate design specific details gained from coupon and subelement tests into the LEF approach
 - Layup, loading modes/R ratios, Environments, ..
 - Bonded joints, interlaminar shear, sandwich, ..
- Address evolution/maturity of material systems, manufacturing processes, test techniques, etc.
 - Reduced test matrix
 - Shared database concept
- Realistic analysis approach for scatter
 - Appropriate analysis techniques for diverse design details
 - User-friendly automated procedures
 - Notch effects on scatter for damage tolerance testing
- Adhesive scatter is a concern (reliability!!!)
- Application of LEF
 - Hybrid structures

Wichita State University

– Summary – Load-Life-Damage Approach

- Incorporation of damage into scatter analysis
 - Investigate large VID damage
 - Scaling
 - Detectability
- Load-Life Shift
 - Investigate different categories of damages/repairs in the same full-scale test article damage
 - Design change substantiation, i.e. gross weight increase
 - LEF during certification vs. improved LEF
 - Life extension or determination of retirement life
- Damage Threats and Inspections
 - Probability of threats/occurrences
 - Probability of detectability
 - Mitigate risks of unintentional failure
 - Inspection intervals using CFU model (cost and reliability)
 - Strategic placement of health monitoring equipments
 - Progressive damage analysis (NLFEA) or scaled component tests

Wichita State University

Questions/Notes

- Contact information:

• Email: waruna@niar.wichita.edu

